基于纳米载体的多柔比星耐药干预及提高抗肿瘤效果的研究进展

赵婷, 张佳, 黄荣荣, 孙明贤, 杜青, 向柏, 曹德英

中国药学杂志 ›› 2019, Vol. 54 ›› Issue (1) : 9-15.

PDF(1456 KB)
PDF(1456 KB)
中国药学杂志 ›› 2019, Vol. 54 ›› Issue (1) : 9-15. DOI: 10.11669/cpj.2019.01.002
综述

基于纳米载体的多柔比星耐药干预及提高抗肿瘤效果的研究进展

  • 赵婷, 张佳, 黄荣荣, 孙明贤, 杜青, 向柏*, 曹德英*
作者信息 +

Research Progress on Strategies of Overcoming Doxorubicin Resistance Based on Nanocarriers

  • ZHAO Ting, ZHANG Jia, HUANG Rong-rong, SUN Ming-xian, DU Qing, XIANG Bai*, CAO De-ying*
Author information +
文章历史 +

摘要

肿瘤多药耐药(MDR)是指肿瘤细胞长期接触某一化疗药物,对多种化疗药物产生交叉耐药性。这是肿瘤细胞免受化疗药物攻击最重要的防御机制,也是导致化疗失败的主要原因。纳米载体作为一种潜在的药物递送工具,可以通过增加药物靶向性分布、实现药物选择性释放、提高细胞内摄、光化学结合以及协同递送多种活性分子等方式来实现对MDR模型的干预。笔者就纳米载体在对抗MDR方面的应用研究进行综述。

Abstract

Multidrug resistance (MDR) refers to the cross-resistance of tumor cells to multiple chemotherapeutic drugs, which stems from long-term exposure to a certain chemotherapeutic drug. MDR is the most important defense mechanism for tumor cells and the main reason to failure of tumor chemotherapy. As a promising drug delivery system, nanocarriers can effectively overcome MDR by enhancing drug targeting to tumors, releasing drug selectively, increasing cellular uptake, the introduction of photochemical, and deliveing multiple active molecules synergistically. In this review, the progress on applications of nanocarriers in overcoming MDR are summarized.

关键词

肿瘤 / 多药耐药 / 纳米载体 / 多柔比星

Key words

tumor / multidrug resistance / nanocarriers / doxorubicin

引用本文

导出引用
赵婷, 张佳, 黄荣荣, 孙明贤, 杜青, 向柏, 曹德英. 基于纳米载体的多柔比星耐药干预及提高抗肿瘤效果的研究进展[J]. 中国药学杂志, 2019, 54(1): 9-15 https://doi.org/10.11669/cpj.2019.01.002
ZHAO Ting, ZHANG Jia, HUANG Rong-rong, SUN Ming-xian, DU Qing, XIANG Bai, CAO De-ying. Research Progress on Strategies of Overcoming Doxorubicin Resistance Based on Nanocarriers[J]. Chinese Pharmaceutical Journal, 2019, 54(1): 9-15 https://doi.org/10.11669/cpj.2019.01.002
中图分类号: R944   

参考文献

[1] KATHAWALA R, GUPTA P, ASHBY C, et al. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade[J]. Drug Resist Update, 2015, 18:1-17.
[2] ZEINALI S, MAJIDI S, NIKZAMIR N, et al. Magnetic nanoparticles as potential candidates for biomedical and biological applications[J]. Artificial Cells, Nanomed Biotechnol, 2016:1-10.
[3] DUAN J, MANSOUR H, ZHANG Y, et al. Reversion of multidrug resistance by co-encapsulation of doxorubicin and curcumin in chitosan/poly(butyl cyanoacrylate) nanoparticles[J]. Int J Pharm, 2012, 426(1-2):193-201.
[4] WOLFBEIS O.An overview of nanoparticles commonly used in fluorescent bioimaging[J]. Chem Soc Rev, 2015, 44(14):4743-4768.
[5] WEI T, CHEN C, LIU J, et al. Anticancer drug nanomicelles formed by self-assembling amphiphilic-dendrimer to combat cancer drug resistance[J]. Proc Natl Acad Sci USA, 2015, 112(10):2978-2983.
[6] WANG J, WU L, KOU L, et al. Novel nanostructured enoxaparin sodium-PLGA hybrid carriers overcome tumor multidrug resistance of doxorubicin hydrochloride[J]. Int J Pharm, 2016, 513(1-2):218-226.
[7] CHAO Y, LIANG Y, FANG G, et al. Biodegradable polymersomes as nanocarriers for doxorubicin hydrochloride: enhanced cytotoxicity in MCF-7/ADR cells and prolonged blood circulation[J]. Pharm Res-Dordr, 2017, 34(3):610-618.
[8] WANG Y, HUANG Y, ANREDDY N, et al. Tea nanoparticle, a safe and biocompatible nanocarrier, greatly potentiates the anticancer activity of doxorubicin[J]. Oncotarget, 2016, 7(5):5877-5891.
[9] MIZRAHY S, RAZ S, HASGAARDM, et al. Hyaluronan-coated nanoparticles: the influence of the molecular weight on CD44-hyaluronan interactions and on the immune response[J]. J Controlled Release, 2011, 156(2):231-238.
[10] WANG J, MA W, GUO Q, et al. The effect of dual-functional hyaluronic acid-vitamin E succinate micelles on targeting delivery of doxorubicin[J]. Int J Nanomed, 2016, 11: 5851-5870.
[11] JUNG H, MOK H. Mixed micelles for targeted and efficient doxorubicin delivery to multidrug-resistant breast cancer cells[J]. Macromol Biosci, 2016, 16(5):748-758.
[12] ZHONG Y, ZHANG J, CHENG R, et al. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts[J]. J Controlled Release, 2015, 205: 144-154.
[13] YANG D, WANG T, SU Z, et al. Reversing cancer multidrug resistance in xenograft models via orchestrating multiple actions of functional mesoporous silica nanoparticles[J]. ACS Applmater Inter, 2016, 8(34):22431-22441.
[14] HE Y, XING L, CUI P, et al. Transferrin-inspired vehicles based on pH-responsive coordination bond to combat multidrug-resistant breast cancer[J]. Biomaterials, 2017, 113: 266-278.
[15] ZHU B, ZHANG H, YU L. Novel transferrin modified and doxorubicin loaded Pluronic 85/lipid-polymeric nanoparticles for the treatment of leukemia: in vitro and in vivo therapeutic effect evaluation[J]. Biomed Pharmacother, 2017, 86: 547-554.
[16] FRANZEN S. A comparison of peptide and folate receptor targeting of cancer cells: from single agent to nanoparticle[J]. Expert Opin Drug Deliv, 2011, 8(3):281-298.
[17] HONG W, CHEN D, ZHANG X, et al. Reversing multidrug resistance by intracellular delivery of Pluronic® P85 unimers[J]. Biomaterials, 2013, 34(37):9602-9614.
[18] WANG H, YIN H, YAN F, et al. Folate-mediated mitochondrial targeting with doxorubicin-polyrotaxane nanoparticles overcomes multidrug resistance[J]. Oncotarget, 2015, 6(5):2827.
[19] EMILIANA P, STEFANIA P, ANNARITA F, et al. Liposome armed with herpes virus-derived gH625 peptide to overcome doxorubicin resistance in lung adenocarcinoma cell lines[J]. Oncotarget, 2015, 7(4):4077-4092.
[20] JIANG D, GAO X, KANG T, et al. Actively targeting D-alpha-tocopheryl polyethylene glycol 1000 succinate-poly(lactic acid) nanoparticles as vesicles for chemo-photodynamic combination therapy of doxorubicin-resistant breast cancer[J]. Nanoscale, 2016, 8(5):3100-3118.
[21] CHEN Y, ZHANG W, HUANG Y, et al. In vivo biodistribution and anti-tumor efficacy evaluation of doxorubicin and paclitaxel-loaded pluronic micelles decorated with c(RGDyK) peptide[J]. PLoS One, 2016, 11(3):e149952.
[22] HAO L, YUAN G, WANG Z.Aptamer: a potential antitumor drugs "targeted ligand"[J]. China Med Herald(中国医药导报), 2012(30):5-6.
[23] LIAO Z, CHUANG E, LIN C, et al. An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumor-specific chemotherapy that overcomes multidrug resistance[J]. J Controlled Release, 2015, 208: 42-51.
[24] LIU J, WEI T, ZHAO J, et al. Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance[J]. Biomaterials, 2016, 91: 44-56.
[25] TAM Y, TO K, CHOW A.Fabrication of doxorubicin nanoparticles by controlled antisolvent precipitation for enhanced intracellular delivery[J]. Colloid Surface B, 2016, 139: 249-258.
[26] MAO X, SI J, HUANG Q, et al. Self-assembling doxorubicin prodrug forming nanoparticles and effectively reversing drug resistance in vitro and in vivo[J]. Adv Healthc Mater, 2016, 5(19):2517-2527.
[27] YANG L, CAO L, ZHAO T, et al. The progress of multifunctional envelope-type nano device [J]. Acta Pharm Sin (药学学报), 2018,53(1):47-53.
[28] FENG Q, LIU J, LI X, et al. One-step microfluidic synthesis of nanocomplex with tunable rigidity and acid-switchable surface charge for overcoming drug resistance[J]. Small, 2017, 13(9):1603109.
[29] LIU J, MA X, JIU S, et al. Zinc oxide nanoparticles as adjuvant to facilitate doxorubicin intracellular accumulation and visualize pH-responsive release for overcoming drug resistance[J]. Mol Pharm, 2016, 13(5):1723-1730.
[30] TAO X Y, JIA N, CHENG N H, et al. Design and evaluation of a phospholipase D based drug delivery strategy of novel phosphatidyl-prodrug[J]. Biomaterials, 2017, 131:1-14.
[31] SUN W, YANG S, YAN X, et al. Research status of activatable cell-penetrating peptides-modified nanocarrier systems[J]. Chin Pharm J(中国药学杂志), 2015, 50(23):2015-2018.
[32] MURA S, NICOLAS J, COUVREUR P. Stimuli-responsive nanocarriers for drug delivery [J]. Nat Mater, 2013, 12(11):991-1003.
[33] HAN N, ZHAO Q, WAN L, et al. Hybrid lipid-capped mesoporous silica for stimuli-responsive drug release and overcoming multidrug resistance[J]. ACS Appl Mater Inter, 2015, 7(5):3342-3351.
[34] XU H, YANG D, CAI C, et al. Dual-responsive mPEG-PLGA-PGlu hybrid-core nanoparticles with a high drug loading to reverse the multidrug resistance of breast cancer: an in vitro and in vivo evaluation[J]. Acta Biomater, 2015, 16: 156-168.
[35] LIU J, LI Q, ZHANG J, et al. Safe and effective reversal of cancer multidrug resistance using sericin-coated mesoporous silica nanoparticles for lysosome-targeting delivery in mice[J]. Small, 2017, 13(9):1602567.
[36] LIONG M, LU J, KOVOCHICH M, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery[J]. ACS Nano, 2008, 2(5):889-896.
[37] PILAPONG C, KEEREETA Y, MUNKHETKORN S, et al. Enhanced doxorubicin delivery and cytotoxicity in multidrug resistant cancer cells using multifunctional magnetic nanoparticles[J]. Colloid Surface B, 2014, 113: 249-253.
[38] ELUMALAI R, PATIL S, MALIYAKKAL N, et al. Protamine-carboxymethyl cellulose magnetic nanocapsules for enhanced delivery of anticancer drugs against drug resistant cancers[J]. Nanomed-Nanotechnol, 2015, 11(4):969-981.
[39] DENG Z, YAN F, JIN Q, et al. Reversal of multidrug resistance phenotype in human breast cancer cells using doxorubicin-liposome-microbubble complexes assisted by ultrasound[J]. J Controlled Release, 2014, 174: 109-116.
[40] YAO C, WANG P, LI X, et al. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance[J]. Adv Mater, 2016, 28(42):9341-9348.
[41] WANG Y, ZHAO R, WANG S, et al. In vivo dual-targeted chemotherapy of drug resistant cancer by rationally designed nanocarrier[J]. Biomaterials, 2016, 75:71-81.
[42] GAO W, YE G, DUAN X, et al. Transferrin receptor-targeted pH-sensitive micellar system for diminution of drug resistance and targetable delivery in multidrug-resistant breast cancer[J]. Int J Nanomed, 2017, 12:1047-1064.
[43] JIA X, ZHANG J, ZHAO T, et al. Research situation of pH low insertion peptides[J]. Acta Pharm Sin(药学学报), 2018, 53(3):375-382.
[44] ZHANG W, WANG F, WANG Y, et al. pH and near-infrared light dual-stimuli responsive drug delivery using DNA-conjugated gold nanorods for effective treatment of multidrug resistant cancer cells[J]. J Controlled Release, 2016, 232: 9-19.
[45] WANG H, ZHAO Y, WANG H, et al. Low-molecular-weight protamine-modified PLGA nanoparticles for overcoming drug-resistant breast cancer[J]. J Controlled Release, 2014, 192: 47-56.
[46] PAN Z, WANG H, ZHANG M, et al. Nuclear-targeting TAT-PEG-Asp8-doxorubicin polymeric nanoassemblyto overcome drug-resistant colon cancer[J]. Acta Pharmacol Sin(中国药理学报), 2016, 37(8):1110-1120.
[47] WANG M, HAN M, LI Y, et al. Chemosensitization of doxorubicin in multidrug-resistant cells by unimolecular micelles via increased cellular accumulation and apoptosis[J]. J Pharmacol, 2016, 68(3):333-341.
[48] TRAN T, NGUYEN H, PHAM T, et al. Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer[J]. ACS Applmater Inter, 2015, 7(51):28647-28655.
[49] PAI C, CHEN Y, HSU C, et al. Carbon nanotube-mediated photothermal disruption of endosomes/lysosomes reverses doxorubicin resistance in MCF-7/ADR cells[J]. J Biomed Nanotechnol, 2016, 12(4):619-629.
[50] TIAN G, ZHANG X, ZHENG X, et al. Multifunctional Rbx WO3 nanorods for simultaneous combined chemo-photothermal therapy and photoacoustic/CT imaging[J]. Small, 2014,10(20):4160-4170.
[51] REN Y, WANG R, LIU Y, et al. A hematoporphyrin-based delivery system for drug resistance reversal and tumor ablation[J]. Biomaterials, 2014, 35(8):2462-2470.
[52] WILLIAMS J, BUCHANAN C, PITT W. Codelivery of doxorubicin and verapamil for treating multidrug resistant cancer dells[J]. Pharm Nanotechnol, 2018, 6(2):1-8.
[53] CAO S, YIN T, YANG S. Reversing effects of curcumin on multi-drug resistance of Bel7402/5-fu cell line[J]. Chin J Integr Tradit Chin West Med(中国中西医结合),2012, 32(2):244-247,252.
[54] LV L, QIU K, YU X, et al. Amphiphilic copolymeric micelles for doxorubicin and curcumin co-delivery to reverse multidrug resistance in breast cancer[J]. J Biomed Nanotechnol, 2016, 12(5):973-985.
[55] MA W, GUO Q, LI Y, et al. Co-assembly of doxorubicin and curcumin targeted micelles for synergistic delivery and improving anti-tumor efficacy[J]. Eur J Pharm Biopharm, 2017, 112: 209-223.
[56] GU Y, LI J, LI Y, et al. Nanomicelles loaded with doxorubicin and curcumin for alleviating multidrug resistance in lung cancer[J]. Int J Nanomed, 2016, 11: 5757-5770.
[57] DANG S, LI G, LIU M. Research progress on quercetin in reversing tumor multidrug resistance[J]. China Cancer(中国肿瘤), 2017, 26(10):802-807.
[58] DAGLIOGLU C.Enhancing tumor cell response to multidrug resistance with pH-sensitive quercetin and doxorubicin conjugated multifunctional nanoparticles[J]. Colloid Surface B, 2017, 156: 175-185.
[59] ZHANG C, YANG S, ZHU W, et al. Distinctive polymer micelle designed for siRNA delivery and reversal of MDR1 gene-dependent multidrug resistance[J]. J Biomed Mater Res B, 2017, 105(7):2093-2106.
[60] SUN L, WANG D, CHEN Y, et al. Core-shell hierarchical mesostructured silica nanoparticles for gene/chemo-synergetic stepwise therapy of multidrug-resistant cancer[J]. Biomaterials, 2017, 133: 219-228.
[61] FAN Y, LIAO J, LU Y, et al. MiR-375 and doxorubicin co-delivered by liposomes for combination therapy of hepatocellular carcinoma[J]. Mol Ther-Nucl Acids, 2017, 7: 181-189.
[62] FLOREA A, BUSSELBERG D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects[J]. Cancers, 2011, 3(1):1351-1371.
[63] ZHANG X, LI J, YAN M.Targeted hepatocellular carcinoma therapy: transferrin modified, self-assembled polymeric nanomedicine for co-delivery of cisplatin and doxorubicin[J]. Drug Dev Ind Pharm, 2016, 42(10):1590-1599.
[64] MIAO L, GUO S, LIN C, et al. Nanoformulations for combination or cascade anticancer therapy[J]. Adv Drug Deliv Rev, 2017, 115: 3-22.

基金

国家自然科学基金项目资助(81773666,81302725);河北省自然科学基金项目资助(H2015206356)
PDF(1456 KB)

Accesses

Citation

Detail

段落导航
相关文章

/